https://techarena51.com/index.php/real-time-linux-server-monitoring-with-node-js-socket-io-and-d3-js-gauges
In this article I will describe how you can visualize the real time Memory and CPU usage of a Linux Server using Socket.io and D3.js gauges.
Before we dive into the code, here is a little background on the Technology.
Socket.io
Socket.io is a javascript library that uses Sockets for fast real time communication. With Socket.io you can create Server and Client side sockets that will listen for events and transmit JSON formatted Data. In this tutorial we will use it for transmitting Linux Server Resource Usage data.
D3.js
D3.js is a client side javascript library that allows you to visualize data with SVG (Scalable Vector Graphics) a text-based image format. With SVG you can specify what an image should look like by writing simple markup code, For example to draw a circle with SVG you can do so with the following code:
Example of the same Circle using D3.js
In this article I will describe how you can visualize the real time Memory and CPU usage of a Linux Server using Socket.io and D3.js gauges.
Before we dive into the code, here is a little background on the Technology.
Socket.io
Socket.io is a javascript library that uses Sockets for fast real time communication. With Socket.io you can create Server and Client side sockets that will listen for events and transmit JSON formatted Data. In this tutorial we will use it for transmitting Linux Server Resource Usage data.
D3.js
D3.js is a client side javascript library that allows you to visualize data with SVG (Scalable Vector Graphics) a text-based image format. With SVG you can specify what an image should look like by writing simple markup code, For example to draw a circle with SVG you can do so with the following code:
1
2
3
| |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| // Create an SVG objectvar svg = d3.select("body") .append("svg") .attr("width", 500) .attr("height", 50);// bind a circle to itsvg.append("circle") .attr("cx", 250).attr("cy", 50).attr("r", 40);// Index.html |
Getting Started
To get started install Node.js and Socket.io on your Linux Server.
Note: These steps are for Ubuntu 14.04 and socket.io 1.4.5
1
2
3
| wget -qO- https://deb.nodesource.com/setup_4.x | sudo bash -sudo apt-get install -y nodejsnpm install --save socket.io |
Socket.io allows you to create sockets with custom events and data. In the example code below I have created Two custom events “total” and “server”. When a Socket request comes in these events will send the current CPU and Memory usage in Percentage and GB respectively.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
| var http = require('http').Server();var io = require('socket.io')(http);var os = require('os');var cpu = require('./cpu.js');// Listen for incoming socket requests on the special “connection” eventio.on('connection', function(socket){// Log to console when a user is connected console.log('a user connected'); // Create the “total” event” and send the total memory data socket.on('total', function(){ var data = {'totalMemory':os.totalmem()}; io.emit('total', data); }); // Create a “server” event and emit real time cpu and memory usage socket.on('server', function(){ cpu().then(function(cpuPercentage) { var data = {'freeMemory':os.freemem(), 'cpu':cpuPercentage}; io.emit('server', data); }); });});http.listen(443, function(){ console.log('listening on *:443');}); |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
| // Explanation at https://github.com/Leo-G/DevopsWiki/wiki/How-Linux-CPU-usage-time-and-Percentage-can-be-calculatedvar os = require("os");//Create function to get CPU informationfunction cpuAverage() { //Initialise sum of idle and time of cores and fetch CPU info var totalIdle = 0, totalTick = 0; var cpus = os.cpus(); //Loop through CPU cores for(var i = 0, len = cpus.length; i < len; i++) { //Select CPU core var cpu = cpus[i]; //Total up the time in the cores tick for(type in cpu.times) { totalTick += cpu.times[type]; } //Total up the idle time of the core totalIdle += cpu.times.idle; } //Return the average Idle and Tick times return {idle: totalIdle / cpus.length, total: totalTick / cpus.length};}//Grab first CPU Measurevar startMeasure = cpuAverage();module.exports = function () { var promise = new Promise(function (resolve, reject) { //Set delay for second Measure setTimeout(function() { //Grab second Measure var endMeasure = cpuAverage(); //Calculate the difference in idle and total time between the measures var idleDifference = endMeasure.idle - startMeasure.idle; var totalDifference = endMeasure.total - startMeasure.total; //Calculate the average percentage CPU usage var percentageCPU = 100 - ~~(100 * idleDifference / totalDifference); resolve(percentageCPU); //Output result to console // console.log(percentageCPU + "%");}, 100);});return promise;} |
D3.js Gauges
You will need to use a web framework to serve D3.js and HTML code. For this tutorial I have used Express.js for it’s ease of use. You will need to modify the index.js file with the following code after installing express.js.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| npm install --save express@4.10.2// Serving a single web page with Express// index.jsvar express = require('express');var app = require('express')();var http = require('http').Server(app);app.get('/', function(req, res){ res.sendFile(__dirname + '/index.html');});http.listen(5001, function(){ console.log('listening on *:5001');}); |
1
2
3
4
5
6
7
8
9
10
| #Index.html<html><body><h2>Linux Resource Monitor</h2></pre><pre></body></html></pre><pre> |
Tomer Doron has already made available a nice example of Google Style Gauges at http://bl.ocks.org/tomerd/149927. I am going to tweak his example to serve real time Linux and Memory usage.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
| |
// main.js// Initialize a socketvar socket = io();var gauges = [];function createGauge(name, label, min, max) { var config = { size: 220, label: label, min: undefined != min ? min : 0, max: undefined != max ? max : 100, minorTicks: 5 } var range = config.max - config.min; config.yellowZones = [{ from: config.min + range*0.75, to: config.min + range*0.9 }]; config.redZones = [{ from: config.min + range*0.9, to: config.max }]; gauges[name] = new Gauge(name + "GaugeContainer", config); gauges[name].render(); }function createGauges() { // Get the Total Memory and Create the Memory Gauge socket.emit('total', {}); socket.on('total', function(data){ createGauge("memory", "Memory", 0, Math.round(data.totalMemory/(1024*1024*1024))); }); // Create the CPU gauge with the default range createGauge("cpu", "CPU"); }function updateGauges() { socket.emit('server', {}); socket.on('server', function(data){ var freeMemory = data.freeMemory/(1024*1024*1024); var usedMemory = 2 - freeMemory.toFixed(2); console.log(usedMemory); var cpuPercentage = data.cpu; for (var key in gauges) { if (key == "memory") { gauges[key].redraw(usedMemory); } else { gauges[key].redraw(cpuPercentage); } } }) } // Create the Gauges and Update them every 5 seconds function initialize() { createGauges(); setInterval(updateGauges, 5000); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| // Index.html |
"initialize()">
"memoryGaugeContainer" style="margin:40px 10px;"> "cpuGaugeContainer" style="margin-top:40px;"> 
Video of the working app.
Complete code is available at https://github.com/Leo-G/LMON.
In depth guides on Linux Memory and CPU resource calculation are available at:
Troubleshooting Linux Memory Usage
How Linux CPU usage is calculated
Ref :
http://alignedleft.com/tutorials/d3.
http://socket.io/get-started/chat/
http://www.websocket.org/quantum.html
https://github.com/mbostock/d3/wiki/Gallery

No comments:
Post a Comment